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Summary: Analysis of ‘H,13C and 31 P NMR spectra of 2-dimethoxyphosphoryl 
and 2-diphenylphosphinoyl-substituted 1,3-oxathianes revealed 
that they exist in solution almost exclusively in a chair confor- 
mation with the phosphoryl group being equatorial. The equatorial 
orientation of the Ph2P(O)-group in 2-(diphenylphosphinoyl)-5,5- 
-dimethyl-1,3-oxathiane was also found in the crystal state. 

The determination of conformational preferences of substituents at the 

carbon atom 2 in 1,3-heteroanes is interesting especially from the point of 

view of understanding the origin of the anomeric effect observed very often 

in these heterocyclic systems l-3 . Recently, we described 4 a contrasting con- 

formational behaviour of 2-phosphoryl substituted 1,3-dithianes 1 and 1,3- 

-dioxanes 2. Thus, whereas the former compounds exist in a chair conformation 

with the axial phosphoryl group, in the latter it is equatorial. 
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According to molecular mechanics calculations’, a strong anomeric effect 

operating in 1, i.e. the axial preference of the R2P(0)-group, is mainly due 

to repulsive interactions occuring in the equatorial conformation of 1 between 

the lone electron pairs on sulphur and the phosphoryl oxygen. In the case of 

1,3-dioxanes 2, owing to a short C-O bond distance, 1,3-syn-axial interactions 

in the axial conformation of 2 are stronger than stereoelectronic effects and 

are responsible for the equatorial position of the P(O)-group. 

The findings briefly presented above prompted us to study the conforma- 

tional behaviour of 2-phosphoryl substituted 1,3-oxathianes 3. The predominant 

orientation of the phosphoryl group in 3 should be determined by a more com- 

plex combination of the steric and stereoelectronic effects because of the 

simultaneous presence of the oxygen and sulphur atom in this six-membered ring. 
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The required 1,3-oxathianes 3a-c were prepared in low to moderate yields (15 

to 30%) by the Arbusov reaction of isopropyl diphenylphosphinite or trimethyl 

phosphite with an appropriate (1,3-oxathian-2-yl)-trimethylammonium iodide6. 
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CMe I- R’OPR* /- 4a,X=CMe2,R=Ph 

3 R'=Me or Pri "LS iR2 
4b,X=CMe2,R=Me0 

3a,X=CMe2,R=Ph, sp26.4 
3b,X=CMe2,R=Me0,Sp17.4 
3c,X=CH2, R=Me0,Sp17.3 0 

5a,R=Ph 
5b,R=MeO 

Analysis of their 'H and .I3 C NMR spectra and especially comparison with 

those for 1,3-dioxanes 4 and 1,3-dithianes 5 bearing the equatorial phosphoryl 

group clearly point to a strong preferential equatorial orientation of the 

P(O)-group in the 1,3-oxathaine ring in solution. Some selected spectroscopic 

data for 3,4 and 5 are collected in Table. 

Table. Selected NMR Data for 2-Phosphoryl-1,3-Heteroanes 3,4 and 5a 

No 

3a 

3b 

3cb 

4aC 

4bd 

5ae 

5be 

'H-NMR 

S4,6-ax s4,6-eq ns 

CH2S CH20 CH2S CH20 CH2S CH20 

2.82 3.28 2.64 3.75 0.18 0.47 

2.16 3.29 2.68 3.78 0.08 0.49 

3.48 - 3.74 - 0.26 

3.45 - 3.76 - 0.31 

2.55 - 3.07 - 0.52 - 

2.69 - 2.96 - 0.27 - 

13C NMR 

r-effect 3J P-P 

CH2S CH20 CH2S CH20 

0.23 0.41 6.0 9.6 

-0.28 -0.13 6.9 11.7 

0.03 0.41 6.4 10.9 

-0.72 - 10.4 

-0.46 - 13.8 

1.21 - 7.1 - 

0.67 - 8.7 - 

a)LY-values in ppm; J-values in Hz; 'H (300.13 MHz) and 13C (75.47 MHz) NMR 

spectra, measured in COC13; b) full analysis of 
1 H NMR spectra is under 

current investigation ; c> data from ref.4; d) this work; e) data from ref.7; 

Two multiplets centered at about 2.7 and 3.5 ppm in the 
1 
H NMR spectrum 

of 3a and 3b were ascribed to the methylene protons connected with the sulphur 

and oxygen atom, respectively. This assignment is strongly supported by com- 

parison of these values with those recorded for 1,3-dioxanes 4 and 1,3-dithia- 

nes 5. The coupling pattern of the CH20 protons in 3a and 3b is very similar 
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to that observed for 1,3-dioxanes 4. For example, in 3b a low-field part of the 

18 system, which is assigned to the equatorial proton,appears in the spectrum 

as a doublet of triplets due to two long-range, W-type couplings with phospho- 

rus and with the equatorial CH2S-proton equal to 1.7 and 1.6 Hz, respectively. 

The up-field shifted part of the CH20-resonance attributed to the axial proton 

is a doublet with the geminal coupling constant, 2J 

contrast to 1,3-dithianes 57, 

H_H=ll.6 Hz. However, in 

the resonance positions of the axial and equato- 

rial CH2S-protons in 3 are reversed. Whereas a low-field part of the CH2S-reso- 

nance centered at 2.6 ppm,appears only as a doublet with 2J H_H=13.2 Hz for 3a 

and 13.3 Hz for 3b, the high-field signal at 2.7 ppm is more complex due to 

additional, W-type couplings with phosphorus c4JH_P=4.6 Hz for 3a and 5.9 Hz 

for 3b) and with the equatorial CH20-proton. Therefore, the latter signal 

corresponds to the equatorial CH2S-proton. 

The observed coupling of the CH20- and CH2S-protons with phosphorus and 

a very small chemical shift difference (A&> between axial and equatorial methy- 

lene protons are best rationalized by assuming the equatorial position of the 

phosphoryl group in the oxathiane chair conformation. This conclusion is fur- 

ther corroborated by the 13C NMR spectra of 3. Both the r-effect values and 

the 3J c_P coupling constants are typical for 1,3-heteroanes with a strong pre- 

ferential equatorial orientation of the P(O) group7. In accord with this, the 

low-temperature 31 
P NMR spectra of 3a-c (down to-120’C) did not show decoale- 

scence and the presence of two conformers. 
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Fig.1. The solid-state conformation of Fig.2. Newman projection along 
3a with the numbering system Cl-P bond showing the 

Fg:e;;n;atorsion angles 

In this context, it is interesting that 3a exists also in the crystal 

state* in the equatorial conformation. A view of its solid-state conformation 

is shown in Fig.1 and a Newman projection along carbon-phosphorus bond in Fig.2 

The six-membered ring adopts a slightly deformed chair conformation with the 

lowest asymmetry parameters:A CS (s-c4)=5.10 and AC 
2(s-c2)=2 5o 

. . This is a conse 

quence of the presence of two heteroatoms in the ring with different bond dis- 
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tances (S-C1=1.826(4 .)A ; O-C1=1.563(4)A) and valence angles equa 

104.2’ for sulphur and oxygen, respectively. 

1 to 93.4’ and 

In conclusion, the results presented above show that, in contrast to 1,3- 

-dithianes, the phosphoryl group at the anomeric carbon atom in 1,3-oxathianes 

strongly prefers to be equatorial like in 1,3-dioxanes. Further studies to syn- 

thesize diastereoisomeric cis- and trans-systems and to evaluateAGO-values for 

1,3-oxathianes are in progress in this Laboratory. 
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