A SOLUTION AND SOLID STATE CONFORMATION OF 2-PHOSPHORYL SUBSTITUTED 1,3-OXATHIANES

Marian Mikołajczyk^{a)*}, Piotr Graczyk^{a)}, Michał W.Wieczorek^{b)} and Grzegorz Bujacz^{b)}

Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Organic Sulphur Compounds^a), 90–362 Łódź, Boczna 5, Poland and Institute of General Chemistry, Technical University^b), 90–924 Łódź, Żwirki 36, Poland

Summary: Analysis of ¹H,¹³C and ³¹P NMR spectra of 2-dimethoxyphosphoryl and 2-diphenylphosphinoyl-substituted 1,3-oxathianes revealed that they exist in solution almost exclusively in a chair conformation with the phosphoryl group being equatorial. The equatorial orientation of the Ph₂P(0)-group in 2-(diphenylphosphinoyl)-5,5--dimethyl-1,3-oxathiane was also found in the crystal state.

The determination of conformational preferences of substituents at the carbon atom 2 in 1,3-heteroanes is interesting especially from the point of view of understanding the origin of the anomeric effect observed very often in these heterocyclic systems¹⁻³. Recently, we described⁴ a contrasting conformational behaviour of 2-phosphoryl substituted 1,3-dithianes 1 and 1,3-ditoxanes 2. Thus, whereas the former compounds exist in a chair conformation with the axial phosphoryl group, in the latter it is equatorial.

According to molecular mechanics calculations⁵, a strong anomeric effect operating in 1, i.e. the axial preference of the $R_2P(0)$ -group, is mainly due to repulsive interactions occuring in the equatorial conformation of 1 between the lone electron pairs on sulphur and the phosphoryl oxygen. In the case of 1,3-dioxanes 2, owing to a short C-O bond distance, 1,3-syn-axial interactions in the axial conformation of 2 are stronger than stereoelectronic effects and are responsible for the equatorial position of the P(0)-group.

The findings briefly presented above prompted us to study the conformational behaviour of 2-phosphoryl substituted 1,3-oxathianes 3. The predominant orientation of the phosphoryl group in 3 should be determined by a more complex combination of the steric and stereoelectronic effects because of the simultaneous presence of the oxygen and sulphur atom in this six-membered ring. The required 1,3-oxathianes 3a-c were prepared in low to moderate yields (15 to 30%) by the Arbusov reaction of isopropyl diphenylphosphinite or trimethyl phosphite with an appropriate (1,3-oxathian-2-yl)-trimethylammonium iodide⁶.

Analysis of their 1 H and 13 C NMR spectra and especially comparison with those for 1,3-dioxanes 4 and 1,3-dithianes 5 bearing the equatorial phosphoryl group clearly point to a strong preferential equatorial orientation of the P(0)-group in the 1,3-oxathaine ring in solution. Some selected spectroscopic data for 3,4 and 5 are collected in Table.

	¹ H-NMR						13 _{C NMR}			
No	δ4,6-ax		δ ₄ ,6-eq		Δδ		४-effect		³ _J _{С-Р}	
	CH ₂ S	CH ₂ 0	CH ₂ S	СН ₂ 0	CH ₂ S	СН ₂ 0	CH ₂ S	СН ₂ 0	CH ₂ S	CH20
3a	2.82	3.28	2.64	3.75	0.18	0.47	0.23	0.41	6.0	9.6
3b	2.76	3.29	2.68	3.78	0.08	0.49	-0.28	-0.13	6.9	11.7
3c ^b							0.03	0.41	6.4	10.9
4a ^C	-	3.48	-	3.74	-	0.26	-	-0.72	-	10.4
4 ь ^d	-	3.45	-	3.76	-	0.31	-	-0.46	-	13.8
5a ^e	2.55	-	3.07	-	0.52	-	1.21	-	7.1	-
56 ^e	2.69	-	2.96	-	0.27	-	0.67	-	8.7	-

Table. Selected NMR Data for 2-Phosphoryl-1,3-Heteroanes 3,4 and 5^a

^{a)} δ -values in ppm; J-values in Hz; ¹H (300.13 MHz) and ¹³C (75.47 MHz) NMR spectra, measured in CDCl₃; ^{b)} full analysis of ¹H NMR spectra is under current investigation; ^{c)}data from ref.4; ^{d)}this work; ^{e)}data from ref.7; f)_{$\Delta\delta$} = $\delta_{4.6-ax}^{-\delta}$, 6-eq.

Two multiplets centered at about 2.7 and 3.5 ppm in the 1 H NMR spectrum of **3a** and **3b** were ascribed to the methylene protons connected with the sulphur and oxygen atom, respectively. This assignment is strongly supported by comparison of these values with those recorded for 1,3-dioxanes **4** and 1,3-dithianes **5**. The coupling pattern of the CH₂O protons in **3a** and **3b** is very similar

to that observed for 1,3-dioxanes 4. For example, in **3b** a low-field part of the AB system, which is assigned to the equatorial proton, appears in the spectrum as a doublet of triplets due to two long-range, W-type couplings with phosphorus and with the equatorial CH₂S-proton equal to 1.7 and 1.6 Hz, respectively. The up-field shifted part of the CH₂O-resonance attributed to the axial proton is a doublet with the geminal coupling constant, ${}^2J_{H-H}$ =11.6 Hz. However, in contrast to 1,3-dithianes 5⁷, the resonance positions of the axial and equatorial CH₂S-protons in **3** are reversed. Whereas a low-field part of the CH₂S-resonance centered at 2.8 ppm, appears only as a doublet with ${}^2J_{H-H}$ =13.2 Hz for **3a** and 13.3 Hz for **3b**, the high-field signal at 2.7 ppm is more complex due to additional, W-type couplings with phosphorus (${}^4J_{H-P}$ =4.6 Hz for **3a** and 5.9 Hz for **3b**) and with the equatorial CH₂S-proton.

The observed coupling of the CH_2O - and CH_2S -protons with phosphorus and a very small chemical shift difference ($\Delta\delta$) between axial and equatorial methylene protons are best rationalized by assuming the equatorial position of the phosphoryl group in the oxathiane chair conformation. This conclusion is further corroborated by the ¹³C NMR spectra of **3**. Both the 8-effect values and the ³J_{C-P} coupling constants are typical for 1,3-heteroanes with a strong preferential equatorial orientation of the P(O) group⁷. In accord with this, the low-temperature ³¹P NMR spectra of **3a-c** (down to-120°C) did not show decoalescence and the presence of two conformers.

In this context, it is interesting that **3a** exists also in the crystal state⁸ in the equatorial conformation. A view of its solid-state conformation is shown in Fig.1 and a Newman projection along carbon-phosphorus bond in Fig.2 The six-membered ring adopts a slightly deformed chair conformation with the lowest asymmetry parameters: $\Delta C_S^{(S-C4)}=5.1^{\circ}$ and $\Delta C_2^{(S-C2)}=2.5^{\circ}$. This is a consequence of the presence of two heteroatoms in the ring with different bond dis-

tances (S-C1=1.826(4)A; 0-C1=1.563(4)A) and valence angles equal to 93.4⁰ and 104.2⁰ for sulphur and oxygen, respectively.

In conclusion, the results presented above show that, in contrast to 1,3-dithianes, the phosphoryl group at the anomeric carbon atom in 1,3-oxathianes strongly prefers to be equatorial like in 1,3-dioxanes. Further studies to synthesize diastereoisomeric cis- and trans-systems and to evaluate ΔG^{O} -values for 1,3-oxathianes are in progress in this Laboratory.

Acknowledgements: This work was financially supported by the projects CPBP-01-13 and RP-II-10

References and Notes

- 1. A.J.Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer Verlag, Berlin, Heidelberg, New York, 1983.
- 2. E.Juaristi, l.Valle, B.A.Valenzuela and M.A.Aguilar, J.Am.Chem.Soc., 1986, 108, 2000 and references cited therein.
- 3. M.Mikołajczyk, Pure Appl.Chem., 1987, 59, 983 and references cited therein.
- M.Mikołajczyk, ₱.Graczyk, M.W.Wieczorek, G.Bujacz, Y.T.Struchkov and M.Y.Antipin, J.Org.Chem., 1988, 53, 3609.
- 5. M.Mikołajczyk, P.Graczyk, M.I.Kabachnik and A.P.Baranov, **J.Org.Chem.**, submitted.
- 6. Optimization of the reaction conditions and yields is being investigated.
- 7. M.Mikołajczyk, P.Graczyk and P.Bałczewski, Tetrahedron Lett., 1987, 28,573.
- 8. Crystal data of **3a**: mp.142-143^oC (acetone), $C_{18}H_{21}PSO_2(332.40)$, orthorombic; space group <u>Pbca</u>; **a**=10.959(6)A, <u>b</u>=17.234(5)A, <u>c</u>=18.683(3)A; V=3528.5(34)A³, Z=8, F(000)=1408, d_{calc}=1.25 gcm⁻³, μ (MoK_d)=2.683 cm⁻¹. The intensities of 3510 reflections were measured on an Enraf-Nonius CAD-4 diffractometer using MoK_d radiation (λ =0.71073 A), graphite monochromator; range of measurements 1<8<25^o; ω /28 scan; empirical absorption correction was applied. The structure was solved by direct methods. The coordinates of all non-hydrogen atoms were used from the E-map. Hydrogen atoms were located in a difference map in the expected positions. After application of the acceptance criterion I \geq 36(I), 1960 reflections were retained for the refinement by full-matrix least-squares method for non-H atoms with anisotropic temperature factors and with isotropic temperature factors for H atoms. Convergence was reached at R=0.074 (R_W=0.079). All the crystallographic data of **3a** are deposited with the Cambridge Crystallographic Data Centre, U.K.

(Received in UK 11 October 1988)